本章小结
k-近邻算法是分类数据最简单最有效的算法,本章通过两个例子讲述了如何使用k-近邻算法构造分类器。k-近邻算法是基于实例的学习,使用算法是我们必须有接近实际数据的训练样本数据。k-近邻算法必须保存全部数据集,如果训练的数据集很大们必须使用大量的存储空间。此外,由于必须对数据集中的每个数据计算距离值,实际使用时可能非常耗时。
k-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息,因此我们也无法知晓平均实例样本和典型实例样本具有什么特征。下一章我们使用概率测量方法处理分类问题,该算法可以解决这个问题。