1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
| from numpy import * import operator from os import listdir
def createDataSet(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels
def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize, 1)) - dataSet sqDiffMat = diffMat ** 2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances ** 0.5 sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]
def file2matrix(filename): fr = open(filename) arrayOLines = fr.readlines() numberOfLines = len(arrayOLines) returnMat = zeros((numberOfLines, 3)) classLabelVector = [] index = 0 for line in arrayOLines: line = line.strip() listFromLine = line.split('\t') returnMat[index, :] = listFromLine[0: 3] classLabelVector.append(int(listFromLine[-1])) index += 1 return returnMat, classLabelVector
def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m, 1)) normDataSet = normDataSet / tile(ranges, (m, 1)) return normDataSet, ranges, minVals
def datingClassTest(): hoRatio = 0.10 datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normMat, ranges, minVals = autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m * hoRatio) errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3) print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("the total error rate is: %f" % (errorCount / float(numTestVecs)))
def classifyPerson(): resultList = ['not at all', 'in small doses', 'in large doses'] percentTats = float(input("percentage of time spent playing video games?")) ffMiles = float(input("frequent flier miles earned per year?")) iceCream = float(input("liters of ice cream consumed per year?")) datingDataMat, datingLabels = file2matrix('datingTestSet2.txt') normMat, ranges, minVals = autoNorm(datingDataMat) inArr = array([ffMiles, percentTats, iceCream]) classifierResult = classify0((inArr - minVals) / ranges, normMat, datingLabels, 3) print("You will probably like this person: ", resultList[classifierResult - 1])
def img2vector(filename): returnVect = zeros((1, 1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0, 32 * i + j] = int(lineStr[j]) return returnVect
def handwritingClassTest(): hwLabels = [] trainingFileList = listdir('trainingDigits') m = len(trainingFileList) trainingMat = zeros((m, 1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) hwLabels.append(classNumStr) trainingMat[i, :] = img2vector('trainingDigits/%s' % fileNameStr) testFileList = listdir('testDigits') errorCount = 0.0 mTest = len(testFileList) for i in range(mTest): fileNameStr = testFileList[i] fileStr = fileNameStr.split('.')[0] classNumStr = int(fileStr.split('_')[0]) vectorUnderTest = img2vector('testDigits/%s' % fileNameStr) classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) print("the classifier came back with:%d, the real answer is : %d" % (classifierResult, classNumStr)) if classifierResult != classNumStr: errorCount += 1.0 print("\nthe total number of errors is: %d" % errorCount) print("\nthe total error rate is: %f" % (errorCount / float(mTest)))
|